skip to main content


Search for: All records

Creators/Authors contains: "Darnajoux, Romain"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Biological nitrogen fixation (BNF) by canonical molybdenum and complementary vanadium and iron-only nitrogenase isoforms is the primary natural source of newly fixed nitrogen. Understanding controls on global nitrogen cycling requires knowledge of the isoform responsible for environmental BNF. The isotopic acetylene reduction assay (ISARA), which measures carbon stable isotope (13C/12C) fractionation between ethylene and acetylene in acetylene reduction assays, is one of the few methods that can quantify isoform-specific BNF fluxes. Application of classical ISARA has been challenging because environmental BNF activity is often too low to generate sufficient ethylene for isotopic analyses. Here we describe a high sensitivity method to measure ethylene δ13C by in-line coupling of ethylene preconcentration to gas chromatography-combustion-isotope ratio mass spectrometry (EPCon-GC-C-IRMS). Ethylene requirements in samples with 10% v/v acetylene are reduced from > 500 to ~ 20 ppmv (~ 2 ppmv with prior offline acetylene removal). To increase robustness by reducing calibration error, single nitrogenase-isoformAzotobacter vinelandiimutants and environmental sample assays rely on a common acetylene source for ethylene production. Application of the Low BNF activity ISARA (LISARA) method to low nitrogen-fixing activity soils, leaf litter, decayed wood, cryptogams, and termites indicates complementary BNF in most sample types, calling for additional studies of isoform-specific BNF.

     
    more » « less
  2. Biological nitrogen fixation (BNF) by microorganisms associated with cryptogamic covers, such as cyanolichens and bryophytes, is a primary source of fixed nitrogen in pristine, high-latitude ecosystems. On land, low molybdenum (Mo) availability has been shown to limit BNF by the most common form of nitrogenase (Nase), which requires Mo in its active site. Vanadium (V) and iron-only Nases have been suggested as viable alternatives to countering Mo limitation of BNF; however, field data supporting this long-standing hypothesis have been lacking. Here, we elucidate the contribution of vanadium nitrogenase (V-Nase) to BNF by cyanolichens across a 600-km latitudinal transect in eastern boreal forests of North America. Widespread V-Nase activity was detected (∼15–50% of total BNF rates), with most of the activity found in the northern part of the transect. We observed a 3-fold increase of V-Nase contribution during the 20-wk growing season. By including the contribution of V-Nase to BNF, estimates of new N input by cyanolichens increase by up to 30%. We find that variability in V-based BNF is strongly related to Mo availability, and we identify a Mo threshold of ∼250 ng·g lichen −1 for the onset of V-based BNF. Our results provide compelling ecosystem-scale evidence for the use of the V-Nase as a surrogate enzyme that contributes to BNF when Mo is limiting. Given widespread findings of terrestrial Mo limitation, including the carbon-rich circumboreal belt where global change is most rapid, additional consideration of V-based BNF is required in experimental and modeling studies of terrestrial biogeochemistry. 
    more » « less